Janet Sawicki, PhD

Photo of Janet Sawicki

Email:  Sawicki@limr.org

Phone: 484.476.3123

Fax: 484.476.2205

Office: R134

Department: Faculty

Association: Resident Faculty

Research Interests

  • Cancer nanotherapies
  • Stem cells and Cancer
  • Pulmonary Mycobacterium avium
  • Google Scholar page 

About her work

Dr. Sawicki is a cancer biologist whose long-standing research objective has been to develop an effective therapy for metastatic cancer. She has more than 30 years of experience in cancer biology, 15 of which have focused on the preclinical development of treatments for cancers, including prostate, ovaries, cervix and pancreas.

Awards and Honors

  • Magna cum laude, University of Delaware
  • NIH Predoctoral Fellowship (1971-1976)
  • Fellow of the Howard Hughes Medical Institute, University of California, San Francisco (1977-1981)
  • Women on the Move, Main Line Today (2008) 


  • 1990 to Present: Professor, Lankenau Institute for Medical Research
  • 2000 to Present: Associate Professor, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia PA
  • 2003 to Present: Adjunct Professor, St. Joseph’s University, Philadelphia, PA
  • 2005 to Present: Investigator, Dept. Hematology/Oncology, Lankenau Medical Center
  • 2006 to Present: Professor, Dept. of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
  • 2006 to Present: Professor, Cancer Biology Center, Thomas Jefferson University, Philadelphia, PA
  • 2007 to Present: Member, NIH Study Section, “Gene and Drug Delivery”
  • 2009 to Present: Deputy Director, Lankenau Institute for Medical Research
  • 2009 to Present: Associate Editor, Cancer Research


Dr. Sawicki trained in classical Drosophila genetics and developmental biology, and then with Dr. Charles Epstein at UCSF where she expanded her research interest to gene regulation/expression in early mammalian development. This experience gave her an appreciation for the similarities between embryonic development and cancer.

  • BA, Biology University of Delaware, Newark, DE, 1971
  • PhD, Genetics Cornell University, Ithaca, NY, 1976
  • PostDoc, Genetics; Yale University, New Haven, CT 1976-1977
  • PostDoc, Genetics; University of California, San Francisco, 1977-1981


Despite several promising advances, the main treatments used today to treat cancer (e.g., surgery, radiation therapy, chemotherapy) reduce tumor burden but do not cure about half of cancer patients. Over half a million Americans continue to die from cancer every year. Most of these patients die because the cancer spreads throughout the body (metastasizes).

Successful treatment of metastatic disease is a great challenge because tumors can develop elsewhere in the body, requiring administration of therapy to the entire patient rather than just to the tumor. Surgery is not always an option, or if used, may not remove every cancer cell. Alternatively, effective radiation and chemotherapy not only kill cancer cells but also many healthy cells, leading to a high level of toxicity for the patient. Therefore, there is a great need for more effective and selective methods to destroy cancer cells.

Dr. Sawicki's Research

Dr. Sawicki’s laboratory is developing new therapeutic strategies that hold great promise for improving the treatment of metastatic cancer. These strategies are based on the delivery of genetic material, specifically, DNA and siRNA, exclusively to tumor cells, thus protecting healthy cells from damage. Indeed, she was among the first to explore the use of non-viral vectors for the in vivo delivery of DNA.

To carry the genetic material inside cancer cells, Dr. Sawicki and her collaborators at MIT, Robert Langer and Daniel Anderson, explored the use of extremely small particles called nanoparticles.

Nanoparticle research currently is an area of intense scientific research because of its wide variety of potential biomedical applications. Dr. Sawicki identified therapeutic targets and evaluated therapeutic efficacy of many nanoparticle formulations in various cancer mouse models.

HuR research. Dr. Sawicki is currently working with Thomas Jefferson University’s Jonathan Brody, an expert on the role of a protein called HuR in pancreatic cancer. Their studies have contributed to an understanding of the role that HuR plays in regulating the expression of genes that help pancreatic cancer cells survive. Their work, which may lead to new targets for effective treatment of this deadly disease, draws on Dr. Sawicki’s extensive experience with gene regulation and animal models for pancreatic cancer.

Her recent work with Robert Getts at Genisphere, uses a DNA dendrimer nanocarrier platform called 3DNA® to suppress ovarian tumor growth and overcome drug resistance. In a recent study, tumor growth was suppressed in the absence of non-specific toxicity to healthy tissue following systemic administration of tumor-targeted 3DNA®-delivery of siHuR to ovarian tumors in mice. This work takes a significant step forward in the field of cancer therapeutics and advances the potential use of 3DNA® technology in the clinic.

Stem cells. The significance of her interest in identifying stem cells in normal developmental processes and the gene-expression profiles of these cells has grown as the field of cancer stem cells/tumor-initiating cells has gained importance. These studies lay the groundwork for identifying potential new therapeutics that target cancer stem cells and lead to more enduring cancer treatments.

Mouse models. Dr. Sawicki is also known for her expertise in generating transgenic mice. Using this technology, she has developed several cancer mouse models useful for her lab’s studies, as well as those of other researchers investigating the role of selected genes in cancer initiation and progression.

Dr. Sawicki has been funded by multiple awards from the National Institutes of Health and the U.S. Department of Defense, as well as from foundations.

Dr. Sawicki's Lab

Dr. Sawicki’s lab focuses on translation studies designed to validate the utility of novel DNA and siRNA cancer therapeutics. Nucleic acid molecules are conjugated to a nanocarrier called 3DNA® (Genisphere). The 3DNA® is also conjugated to molecules that target delivery and uptake of the therapeutic to tumor cells following systemic administration, thus sparing healthy cells from deleterious effects. Mouse cancer models are used to test efficacy and safety of these new therapeutics. Different imaging modalities, including bioluminescence, ultrasound and microCT, are routinely used to measure tumor response to treatment with 3DNA® formulations. These pre-clinical studies are designed to meet requirements for FDA approval and entry into clinical trials.

Lab Personnel

  • Weidan Peng, PhD, Research Assistant Professor
  • Narumi Furuuchi, Biomedical Research Assistant II
  • Lindsay Courtney, Research Lab Associate 
  • Yu-Hung Huang, MS, Graduate Student

2015 Selected Publications

The RNA-binding protein HuR facilitates proliferation and metastasis in human pancreatic ductal adenocarcinoma; M Jimbo, FF Blanco, B Screnci, G Cosma, V Alexeev, YH Huang, Cancer Research 75 (15 Supplement), 5133-5133

Inhibition of HuR effectively suppresses ovarian tumor growth in mice; JA Sawicki, YH Huang, JR Brody, RC Getts, K Rhodes, J Gerhart, Cancer Research 75 (15 Supplement), 3542-3542

Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells.; M Jimbo, FF Blanco, YH Huang, AG Telonis, BA Screnci, GL Cosma, Oncotarget

MUC1 Promoter–Driven DTA as a Targeted Therapeutic Strategy against Pancreatic Cancer; RM Tholey, S Lal, M Jimbo, RA Burkhart, FF Blanco, JA Cozzitorto, Molecular Cancer Research 13 (3), 439-448

Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells. Jimbo M, Blanco FF, Huang YH, Telonis AG, Screnci BA, Cosma GL, Alexeev V, Gonye GE, Yeo CJ, Sawicki JA, Winter JM, Brody JR, Oncotarget. 2015 Sep 29;6(29):27312-31.

2014 Selected Publications

Abstract B06: Abi1 levels regulate prostate tumor progression in mice downstream from Pten inactivation; A Chorzalska, X Xiong, A Lunardi, JR White, JA Sawicki, G Bratslavsky, Molecular Cancer Research 12 (11 Supplement), B06-B06

Systemic administration of DNA nanoparticles containing the diphtheria toxin gene reduces pancreatic tumor load in mice; JA Sawicki, W Peng, K Rhodes, R Getts Cancer Research 74 (19 Supplement), 700-700

Normal estrogen, but low dehydroepiandrosterone levels, in women with pulmonary Mycobacterium avium complex. A preliminary study; J Danley, R Kwait, DD Peterson, J Sendecki, B Vaughn, K Nakisbendi, Annals of the American Thoracic Society 11 (6), 908-914

TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli; PM Munne, Y Gu, M Tumiati, P Gao, S Koopal, S Uusivirta, J Sawicki, Scientific reports 4

HuR posttranscriptionally regulates WEE1: implications for the DNA damage response in pancreatic cancer cells; S Lal, RA Burkhart, N Beeharry, V Bhattacharjee, ER Londin, Cancer research 74 (4), 1128-1140

Main Line Health